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Abstract

We design and implement efficient MPI AllReduce operations when
the input data vectors are sparse, that is, have a high fraction of neu-
tral elements with respect to a given binary operator. This task, which
we call the sparse AllReduce problem, strictly generalizes standard MPI
collectives, by allowing processes to contribute input data vectors of
heterogeneous sizes, since neutral elements can be simply ignored. The
goal is to design algorithms which minimize the overall communica-
tion cost for each node to obtain the result of the AllReduce operation.
We present a set of efficient algorithms for varying sparsity, distribu-
tion of non-neutral elements in the input vectors, number of processes,
and communication size.

We validate our algorithmic results experimentally on a set of large
scale machine learning applications, showing that we can leverage spar-
sity for practical runtime savings, compared to standard MPI Reduc-
tion operations. When sparsity is not given naturally, we develop an
efficient algorithm for selecting the top k absolute values in expectation
of a given vector. This routine, combined with the variants of the sparse
AllReduce algorithms, is included into a state-of-the-art deep learning
framework. A lightweight generic framework is developed in order to
train large scale linear classifiers on various architectures making use
of sparse AllReduce calls. We achieve major speedup for training linear
classification models on a numerous number of nodes, and see signifi-
cant reduction on the communication part when training large scaled
deep learning models on a supercomputer.
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Notation

Variable Description

P Number of nodes
N Dimension
pi Node i, 1 ≤ i ≤ P
Hi Set of non-neutral indices at pi
ki Cardinality at each node: |Hi|
k Max number of non-neutral elements: maxi ki
K Size of result: | ∪P

i=1 Hi| (k ≤ K ≤ min{N, k× P})
d Density of non-neutral elements: k

N
M Number of training samples
B Mini-batch sizes per nodes
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Chapter 1

Introduction and Motivation

Collective operations play a critical role in parallel systems and are a ma-
jor component of message passing interface (MPI) standards [16]. Among
these, some of the most frequently used are many-to-many reduction op-
erations such as MPI Allreduce, which logically collects data items (or a
vector of items) from each process, applies the reduction operation (e.g. the
sum), and returns the result to all participating processes. Many-to-many
reductions are central in data-parallel applications such as neural network
training [13], where processors compute independently over data batches,
and periodically update their local model copies by taking the average over
all node updates.

Our work starts from the observation that many of the built-in MPI binary
reduction operators, e.g. MPI SUM, have neutral elements (i.e. zero) for
several data types. By ignoring these neutral elements, we obtain a new
sparse version of the problem, which we call the sparse AllReduce problem.
Sparse AllReduce generalizes MPI many-to-many reductions as each pro-
cess is now allowed to contribute vectors of different sizes, since we ignore
neutral elements. The intermediate resulting vectors are also heterogeneous
in size, because the number of neutral elements can vary after every re-
duction step. Depending on the sparsity (fraction of neutral elements) of
input vectors, the amount of communication and computation can be sig-
nificantly reduced when comparing to a dense instance, which can lead to
performance improvement.

Solving the sparse AllReduce problem efficiently is far from trivial. Even in
the dense case, the selection of a reduction structure is often largely based
on the input vector sizes and number of participating nodes. For instance,
trees are efficient for small data sizes, whereas linear pipelines or rings are
preferable for large amounts of data [26]. Moreover, sparse AllReduce op-
erations introduce the additional challenge of data dependency, since the size
of input vectors depends on the number of neutral elements, and the behav-
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1. Introduction and Motivation

ior of the algorithm should adapt to the density of intermediate resulting
vectors. This makes the problem significantly more challenging, since the
algorithm must fit the data distribution in order to perform efficiently.

There are many practical settings in which the data to be communicated is
sparse. An immediate example is computation of large scale graph data,
which is known to follow a power-law degree distribution, see e.g. Zhao et
al. [45]. Another setting which can benefit from such a primitive is the data-
parallel training of machine learning models, widely used to scale training
over large datasets and large models [40, 10]. Here, working nodes process
batches of examples in parallel and periodically synchronize their model
replicas by calculating the average over all the processors updates. Although
the models are very large, counting millions of parameters, each of the pro-
cessors model updates may be sparse naturally, or enforced by postponing
the contribution of small valued elements [14, 1]. An efficient implemen-
tation of a sparse AllReduce can take advantage of this sparse structure,
leading to significant runtime improvements in such scenarios.

1.1 Related Work

The problem of designing efficient algorithms for dense collective operations,
such as AllReduce and AllGather, is a classic one in parallel computing. We
limit ourselves by covering related work on sparse collectives, and refer the
reader to Rabenseifner et al. [36], and Hoefler et al. [26] for complete surveys
in the dense case.

The first reference to explicitly consider the sparse Allreduce problem is the
system Kylix [45], which considers sparse many-to-many reductions in the
context of computation over large scale distributed graph data on commu-
nity clusters. The same problem is solved naı̈vely on large scale graph com-
munication packages such as GraphLab [30] and PowerGraph [17]. Kylix
proposes a nested, heterogeneous-degree butterfly network architecture for
aggregating the data, in which the butterfly degree changes from one layer
to the next, hence the name. Values first pass “down” through the network
(implementing a ReduceScatter), and then back up through the same nodes
(implementing an AllGather). The authors show both, analytically and ex-
perimentally (on large graph computation benchmarks), that this solution
scales well on power-law distributed data. Machine learning tests with vary-
ing in and out vertices after each AllReduce call are omitted in their work.
To overcome the fact that the problem is data-dependent, the authors of
Kylix propose to run the downward pass twice, once a “configuration” step
calculating the overlap of input indices, and the second time to perform the
actual ReduceScatter. This configuration pass is needed if the input changes
after each iteration, e.g. present in the context of machine learning. Dis-
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1.2. Contributions

tributed graph algorithms can highly benefit from this configuration pass,
as the in- and output indices remain constant.

There is an extremely rich amount of work studying algorithms and systems
for optimizing distributed large scale learning by adapting data-parallel
stochastic gradient descent (SGD). One direction of research focuses on up-
dating the model in a non-blocking fashion using an asynchronous architec-
ture. Recent papers by Duchi et al. [15] and Lian et al. [29] give proofs on the
convergence for convex and non-convex cases respectively. An orthogonal
approach to this and to our work, focuses on compressing communication.
Seide et al. [40] propose an 1-Bit SGD version, where every model update
value is compressed to its sign. QSGD by Alistarh et al. [3] even goes a
step further and proposes a family of communication-efficient adaptations
of classical SGD, based on the idea of compressing gradients at each node
to an arbitrary number of bits. An alternative idea to data-parallel SGD is to
split the model amongst various workers. Dean et al. [13] uses this technique
combined with data-parallelism for training deep neural networks.

The work closest to ours is that of Dryden et al. [14], which studies ways
to reduce the overheads of communication in data-parallel training of large
scale neural networks. They propose a variant of the classical SGD training
algorithm in which every node only sends its biggest k update values at each
iteration, accumulating the other values locally. This variant renders the
updates sparse, and the authors show that the delayed elements do not hurt
convergence speed on the MNIST image classification dataset. The speedup
achieved compared to MPI AllReduce is given at a factor of 1.18x. The
authors implement a sparse variant of the classical AllReduce algorithm via
a pairwise reduce-scatter followed by a ring-based AllGather. The amount of
data is kept constant at every stage of their algorithm by re-selecting the top
k values and postponing the other received values, contrary to our generic
sparse AllReduce formulation.

A second paper suggesting a TopK approach for training deep neural net-
works is given by Aji et al. [1]. The authors perform neural machine trans-
lation on 4 GPUs achieving a speedup of factor 1.22x by mapping the 99%
smallest values to zero and then exchange sparse matrices using asynchronous
SGD following a parameter-server paradigm. Additionally, Aji et al. con-
ducted an experiment on the MNIST dataset using a fully connected feed
forward neural network similar to the one given by Dryden et al. A speedup
of a factor 1.49x is achieved by dropping 99% of the gradient.

1.2 Contributions

The main contribution of this thesis lies in the formal definition of the sparse
AllReduce problem and the design of communication efficient algorithms
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1. Introduction and Motivation

with analytical runtime bounds. Those procedures are verified accurately
based on synthetic micro benchmarks. For enforcing sparsity efficiently, an
approximate adaptation of TopK SGD, taking k elements in expectation, is
proposed.

Numerous experiments are conducted on large scale machine learning ap-
plications. For training linear classifiers on various architectures, MPI-SGD,
a lightweight generic framework, is developed. The sparse AllReduce algo-
rithm variants are fused into MPI-SGD in order to leverage natural sparsity
of the model updates when training large scale binary classification models.
We achieve a speedup of up to factor 20x on an infiniband cluster compared
to a dense AllReduce version. Finally, the adapted version of TopK SGD
combined with our designed sparse AllReduce algorithms is incorporated
into a deep learning framework, in order to achieve a speedup of up to a
factor 4x on large scaled deep learning models.

All the positive and negative findings are described in the experiment sec-
tion. The discussion chapter offers an overview over all the results as well
as potential topics to further investigate.
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Chapter 2

Scalable Machine Learning

In this chapter we give a short but thorough overview over current scalable
machine learning topics. Large scale may refer to two, not necessarily exclu-
sive, properties of learning problems:

1. Large number of training samples

2. Large dimension of the models to train.

We give an introduction to the most widely used and theoretically best un-
derstood optimization techniques for a large number of samples, some su-
pervised machine learning problems with big models and the frameworks
to train those models. Last, but not least, we quickly introduce a variant of
data-parallel SGD, TopK SGD, which aims to enforce sparsity in the gradient
updates while preserving convergence.

2.1 Data-Parallel SGD

We briefly give an introduction to data-parallel SGD, the most commonly
used method for training large scale machine learning problems. For a more
detailed overview over optimization methods used in machine learning, we
refer to Bottou et al. [5]. His technical report also gives a profound overview
on how to scale machine learning to a large number of nodes. However, we
formally introduce data-parallel SGD and show how one could scale this
method with highlighting potential pitfalls.

Let us have any function of the form:

f (w) =
1
M

M

∑
i=1

fi(w),

with w ∈ RN representing the model we want to train. In terms of empirical
risk minimization, fi represents the loss given for a single sample, whilst
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2. Scalable Machine Learning

we try to minimize the loss over the entire training set. We give various
examples for such loss functions in the next two chapters. A naı̈ve way to
determine the model, which minimizes f , is to apply Gradient Descent (GD).
The method iteratively changes the current model parameters by subtracting
the gradient of the loss multiplied by some learning rate.

wt+1 = ηt∇ f (wt)

The main problem with this method consists of the fact, that one needs to
do a pass over all the training samples in order to calculate the gradient of
f and perform one iterative step. A stochastic approach for solving this is
to choose one sample j uniformly at random, and than perform the update
step solely based on the gradient for this function f j. This method is called
Stochastic Gradient Descent (SGD).

wt+1 = ηt∇ f j(wt)

Notice that this gradient is unbiased, so even when we introduce some vari-
ance, in expectation we move towards a local minimum. Convergence and
adaptation of the learning rate ηt has been studied extensively in the stochas-
tic optimization literature. The original paper suggesting SGD by Robbins
and Monro [38] states, the learning rate has to satisfy both ∑∞

t=0 ηt = ∞ and
∑∞

t=0 η2
t < ∞, in order to ensure convergence.

For reducing the variance at each stochastic gradient, instead of taking one
single sample uniformly at random, one can take a mini-batch of size B
samples and calculates the stochastic gradient based on those samples.

wt+1 = ηt∇
B

∑
j=1

f j(wt)

This gradient is still unbiased. In practice, Gurbuzbalaban et al. [20] noticed,
that instead of uniformly sampling those mini-batches, one can simply shuf-
fle the entire dataset, split it into batches of size B and run an update step
based on each batch gradient. Such a pass over the entire dataset is com-
monly called an epoch. This leads to mini-batch data-parallel SGD (later
only referred as data-parallel SGD or classical SGD) shown in Algorithm 1.

6



2.1. Data-Parallel SGD

Algorithm 1 Data-Parallel Mini-Batch SGD

1: Initialize w
2: for t = 1, ..., T do
3: Randomly shuffle training samples
4: Partition all samples into batches: {bi | 1 ≤ i ≤ d M

B×Pe}
5: for i = 1, ..., d M

B×Pe do
6: Partition samples bi into batches {bij | 1 ≤ j ≤ P}
7: for machine j = 1, ..., P do in parallel
8: ∆wj = ηti ∑n∈bij

∇ fn(w)

9: end for
10: w← w−∑P

j=1 ∆wj
11: end for
12: end for

When looking at the algorithm carefully, one notices that the theoretical
batch size is not B, but rather B× P. This is of importance for determining
the learning rate strategy which ensures convergence. This handcrafted task
of choosing those hyperparameters is challenging. Bottou et al. give theoret-
ical and intuitive explanations for this in their technical report [5]. Recent
papers show, with the appropriate learning rate strategy (see You et al. [44]
and Goyal et al. [19]), one can scale up to huge mini-batches without having
any loss in convergence. Those results are newish and have to be verified
empirically on various datasets for large scale training.

Another conspicuousness in Algorithm 1 in line 10 is the aggregation of all
the model updates, representing gradients scaled by the learning rate on
every node, which has to be performed. This operation is implemented usu-
ally in two different ways: Either by the parameter-server, or the AllReduce
paradigm. When using the parameter-server paradigm, every worker sends
its model updates to a designated server, and gets the result from the same
node. This is highly non-scalable as there is one single point of communi-
cation. In the AllReduce paradigm on the other hand, on which we focus
within this work, all workers interchange their model updates by some re-
duction structure, and thus every node is preferably equally involved in this
process. For the sake of completeness we have to mention, when dealing
with asynchronous data-parallel SGD, as for now, one can only rely on the
parameter-server paradigm.

This gradients aggregation is the main bottleneck when scaling to a big
dimension of the model and increasing the number of nodes. For scaling up
to huge model dimensions, we notice that we can lower the amount of data
communicated when the gradients, and thus the model updates at every
node, are sparse. This is the use case, when the sparse AllReduce operation
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2. Scalable Machine Learning

comes into play. This sparsity can be given naturally, or enforced by some
modification of the SGD algorithms we describe in chapter 2.4.

2.2 Linear Classifiers

We give an overview over the two types of linear classifiers used as a show-
case for our sparse AllReduce algorithms. Linear classifiers, or linear models
for classification, decide upon the class to assign a sample based on a linear
combination of the model with the feature vector of each sample. For both
examples, we have a set S of |S| = M samples:

S = {(xj, yj) | xj ∈ RN , yj ∈ {−1, 1}, 1 ≤ j ≤ M}.

yj denotes the value, in this case the class, every sample belongs to, whereas
xj represents the feature vector of every sample.

2.2.1 Logistic Regression

Logistic Regression is a maximum likelihood method for estimating the
model vector w, if one assumes that all observed training samples were
generated by a binomial model that depends on the output of the classifier.
It was initially developed by David Cox in the late 60s [11]. Following the
separability assumption of the function f , we have to define the loss func-
tion per sample and its gradient in order to be able to train such a linear
classifier.

f j(w) = ln
(

1 + exp
(
−yjwTxj

))
‘ln’ represents the natural logarithm and ‘exp’ the natural exponential func-
tion ex. The gradient of the function is given by:

∇ f j(w) =
−yj

1 + exp
(
yjwTxj

)xj.

Based on those two equations, one can simply run the previously described
iterative SGD algorithm in order to reach a model which minimizes the em-
pirical risk. Notice that this function f is convex, and therefore it ensures
that SGD converges to the global minimum, if choosing appropriate learn-
ing rates [6]. A new sample can then be classified based on the trained
model vector w by applying the logit function (hence the name of the regres-
sion method) on the linear combination of the model vector and the feature
vector:

σ
(

wTxj

)
=

1
1 + exp

(
−wTxj

) .

This logit, also called sigmoid function, returns the probability of belonging
to class +1. Symmetrically, the probability of belonging to class −1 is 1−
σ
(
wTxj

)
.
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2.3. Deep Neural Networks

2.2.2 Support Vector Machines (SVM)

Support Vector Machines (SVM) are a second type of linear model classifica-
tion. SVMs belong to non-probabilistic classification methods. The goal of
SVMs is to determine a class-separating hyperplane parametrized by w in
the space of dimension N. The hyperplane should typically be chosen such
that the margin between both training classes is maximized. There are some
extensions to this if the classes distributions overlap. The exact derivation
of the loss function and additional descriptions, such as relations to Logistic
Regression, can be found in the book written by Christopher M. Bishop [4,
Chapter 7]. Similarly to Logistic Regression we give the definition of the
loss function and its gradient derivation.

f j(w) = max
(

0, 1− yjwTxj

)
∂ f j(w)

∂wi
=

{
−yjxji , if yjwTxj < 1
0 , otherwise

Notice that SVMs are prone for sparse model updates, due to the form of
the loss function. A new sample can simply be classified by looking at the
sign of the linear combination between feature and model vector.

2.2.3 MPI-SGD

We want to be able to efficiently train our previously described linear mod-
els on various architectures including high performance computing environ-
ments such as supercomputers. Message passing interface (MPI) is one of
the standards used on most of nowadays supercomputing environments to
communicate between nodes. There exist some frameworks, such as Apache
Spark1, which enable large scale data processing and training of linear mod-
els. Those frameworks are usually not optimized for high performance com-
puting environments and are simply oversized for this rather simple prob-
lem of training linear models. Therefore, we chose to develop a lightweight
generic framework, which only makes use of any MPI implementation in
order to train linear models on any hardware architecture. MPI-SGD is the
tool which was finally built for this purpose. We give a feature overview
in the implementation chapter as well as a description on how to incorpo-
rate different models and gradient aggregation strategies using our generic
framework.

2.3 Deep Neural Networks

Recent progresses in most of the machine learning and artificial intelligence
areas are due to heavy usage of deep neural networks. Those successes

1https://spark.apache.org/
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2. Scalable Machine Learning

affect topics such as image recognition, image understanding, natural lan-
guage understanding and machine translation to name a few. Giving a pro-
found overview over all types and variants of networks clearly goes beyond
the scope of this thesis. Additionally, there is plenty of literature available
online or summarized in books such as Deep Learning written by Goodfel-
low et al. [18]. We therefore restrict ourselves on giving an overview over
the different types of networks used in the experiment section, as well as a
description of the framework utilized for the same purpose.

2.3.1 Fully Connected Neural Networks

Those types of networks are fairly simple but not less powerful. Each unit
in the hidden layer is simply connected to every unit in the previous layer.
Figure 2.1a illustrates this scheme.

(a) Fully connected neural network (b) Convolutional neural network

Figure 2.1: Various deep neural networks2

2.3.2 Convolutional Neural Networks

A convolutional neural network, depicted in Figure 2.1b, is mainly used
for tasks involving images. Those networks combine fully connected layers
with convolutional and max pooling layers. The name indicates already that
some layers perform a convolution on sub-patches of the entire input image.
Max-pooling layers reduce the size of the convolved input by taking the
maximum value of every sub-patch, usually of size 4, over the entire image.

2.3.3 RNN / LSTM

Recurrent neural networks (RNN) are slightly more complicated. Both pre-
viously mentioned architectures are feed forward neural networks, that is,
every neuron is only connected to neurons on previous layers. This per-
mits efficient gradient computation by using a known technique called back-
propagation. RNNs on the other hand allow connections between units to
form directed cycles. This enables the network to simulate dynamic tempo-
ral behavior. Especially for problems involving text and natural language,

2Image source: http://cs231n.github.io/convolutional-networks/
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2.3. Deep Neural Networks

this property is powerful as one word alone is in most cases useless if not
compared to its context. As some problems arise from long term depen-
dencies when unrolling such RNNs for performing backpropagation, a spe-
cialization of RNNs called long short-term memory (LSTM) was invited by
Hochreiter et al. in 1997 [24]. Figure 2.2a shows the unfolding of a RNN
used for backpropagation. Figure 2.2b illustrates a sequence-to-sequence
neural network usually implemented with one or multiple LSTM cells.

(a) Unfolding a RNN3 (b) Sequence-to-sequence [42]

Figure 2.2: Example usage of recurrent neural networks

2.3.4 The Microsoft Cognitive Toolkit (CNTK)

We need an open source framework for training neural networks using dis-
tributed data-parallel SGD. The Microsoft Cognitive Toolkit, former known,
and as from now on referred as CNTK in this document, is “a free, easy-
to-use, open-source, commercial-grade toolkit that trains deep learning al-
gorithms to learn like the human brain”4. A complete documentation is
available on the frameworks website and is therefore omitted here. We high-
light some basic features, we will later refer to, for the sack of completeness.

Architecture and Parameters

The toolkit offers a generic way for defining any type of network by making
use of their customized script language brainscript. Scripts for the previously
described and other commonly used neural networks are given as examples
in the source code repository by Microsoft. Additional to the networks struc-
ture, selection of the learning algorithm, aggregation strategy and various
hyperparameters are also declared within such brainscript files.

Tensor Handling

The entire model is split into layers according to the network architecture.
Every layer holds a tensor representing the current model parameters. This
tensor is used for both parts of every iterative learning algorithm. For the
forward pass, where the output of the previous units is multiplied by the
model tensor before performing activation. And for the backpropagation,

3Image source: http://cs231n.github.io/convolutional-networks/
4https://www.microsoft.com/en-us/cognitive-toolkit/
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2. Scalable Machine Learning

where a gradient tensor is calculated using the chainrule and the activation
values of the succeeding units. Notice that every gradient tensor is stored
non-consecutively with the tensors of the other layers in memory. Any gra-
dient aggregation strategy therefore runs its method for every layer tensor
individually, and preferably in a non-blocking way, in order to overlap com-
munication and computation.

Gradient Computation

CNTK enables computation to be executed either on central processing units
(CPUs) or graphics processing units (GPUs). The later offers high compu-
tation efficiency for easy parallelizable problems such as matrix-vector mul-
tiplications. As this is one of the main operations used for calculating the
gradients, GPUs have enabled significant speedup when training large scale
neural networks. To this goal, CNTK makes use of CUDA by Nvidia as a
programming API5 for executing some code on GPUs. As previously stated,
gradient aggregation is performed in a non-blocking fashion due to the ten-
sor handling in CNTK. When computation of the gradients is performed on
GPUs, those values have to be copied from device to host memory before
running the aggregation across multiple machines. Those memory copy op-
erations are executed using non-blocking CUDA calls in order to ensure
further progress in the meantime.

Parallel Training

The deep learning toolkit has already implemented several gradient aggre-
gation strategies. Notably data-parallel SGD, model-averaging SGD [35] and
Block-Momentum SGD [9]. Data-parallel SGD comes in three variants: syn-
chronous, asynchronous and 1-Bit SGD [40]. All those distributed variants
use MPI for communicating between nodes. We compare our algorithm
to the synchronous, full precision data-parallel SGD variant in this work, as
the others lack of theoretical convergence guarantees, and synchronous data-
parallel SGD is the most often used tool in state-of-the art methods [8, 13].
The code for 1-bit SGD is nevertheless used as a starting point for imple-
menting our SGD variants.

2.4 TopK SGD

We have seen previously, while describing the data-parallel SGD algorithm,
one can benefit of a sparse AllReduce algorithm if the model updates are
sparse. If this is not given naturally, we can enforce every update to be
sparse and have exactly k items. This is doable by selecting the biggest k

5https://developer.nvidia.com/cuda-zone

12

https://developer.nvidia.com/cuda-zone
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items regarding their absolute values and postpone the contribution of the
other elements to the next iterative step. Algorithm 2 shows those modifica-
tions highlighted in red to data-parallel SGD.

Algorithm 2 TopK SGD - With Error Correction

1: Initialize w and {rj = 0 | 1 ≤ j ≤ P}
2: for t = 1, ..., T do
3: Randomly shuffle training samples
4: Partition all samples into batches: {bi | 1 ≤ i ≤ d M

B×Pe}
5: for i = 1, ..., d M

B×Pe do
6: Partition samples bi into batches {bij | 1 ≤ j ≤ P}
7: for machine j = 1, ..., P do in parallel
8: ĝj = rj+∑n∈bij

∇ fn(w)

9: Select k biggest absolute value of ĝj being |ĝj[l] |
10: rj = 0
11: rj[i] ← ĝj[i] ∀i, |ĝj[i] | < |ĝj[l] |
12: ĝj[i] ← 0 ∀i, |ĝj[i] | < |ĝj[l] |
13: ∆wj = ηti ĝj
14: end for
15: w← w−∑P

j=1 ∆wj
16: end for
17: end for

This idea is not entirely new and has been shown to still ensure conver-
gence accuracy and speed for some distinct deep learning problems [1, 14].
Both references only show convergence for small image classification and
natural language understanding (NLU) problems empirically, and do not
give any theoretical guarantees for maintaining convergence. Having natu-
rally sparse gradients consisting of less than k elements at every node, this
method clearly neither affects convergence, nor its speed in comparison to
classical SGD. Showing this is trivial, as only zero valued elements are added
to the residual and therefore ĝj corresponds to the true stochastic gradient
at every point in time. We belief, if the gradients are not naturally or at
least almost sparse, this method of only incorporating the biggest k absolute
values will not hinder convergence, but can compromise its rate. The sec-
ond claim is shown by giving an example in the experiments section, where
convergence for training CNNs with TopK SGD, which are known to have
mostly dense updates, is worse than training using classical SGD and all the
values. The claim for convergence is not proven yet, but the author beliefs
that by adopting recent asynchronous SGD convergence proofs ([12, 15, 29]),
one should be able to give convergence guarantees under some assumptions
over k.

13



2. Scalable Machine Learning

2.4.1 Approximate TopK SGD

Selecting exactly the biggest k elements in absolute values on a vector of
dimension N implies at least a partial sort of the data and O(N log(k))
runtime complexity. To speed up the algorithm, we can relax the condition
of exactness and select approximately the biggest k elements. A natural
way to do this would be to follow a randomized algorithm to select the
biggest absolute values with a high probability similar to “A Randomized
Algorithm for Computing the Median” [32, Chapter 3.4].

There is another path one can follow in order to speed up the algorithm. We
select k items in expectation by favoring bigger magnitudes and if possible
neglect zero valued entries. We therefore distinct two cases and define the
probability pi of selecting a value vi at index i. v is an arbitrary vector of
dimension N. ‖v‖1 and ‖v‖∞ represent the L1 and L∞ norm of the vector
respectively.

pi =

{ k|vi |
‖v‖1

, if ‖v‖∞ ≤ ‖v‖1
k ;

k(|vi |+ε)
(‖v‖1+Nε)

, otherwise,

with:

ε ≥ k‖v‖∞ − ‖v‖1

N − k
.

Note that ε has to take this form in order to ensure 0 ≤ pi ≤ 1, ∀i ∈
{1, . . . , N}. Obviously, all pi have to be positive.

max
i

k(|vi|+ ε)

(‖v‖1 + Nε)
=

k(‖v‖∞ + ε)

(‖v‖1 + Nε)

≤
k
(
‖v‖∞ + k‖v‖∞−‖v‖1

N−k

)
‖v‖1 + N k‖v‖∞−‖v‖1

N−k

=
k
(
(N−k)‖v‖∞+k‖v‖∞−‖v‖1

N−k

)
(N−k)‖v‖1+Nk‖v‖∞−N‖v‖1

N−k

=
k (N‖v‖∞ − ‖v‖1)

(Nk‖v‖∞ − k‖v‖1)
= 1

Theorem 2.1 If every index i ∈ {1, . . . , N} is selected with probability pi defined
above, k items will be selected in expectation.

Proof We define a Bernoulli random variable Xi with probability pi for ev-
ery i ∈ {1, . . . , N}. Additionally, let the random variable Y = ∑n

i=0 Xi rep-
resent the number of selected indices. We show that E [Y] = k for the case
‖v‖∞ > ‖v‖1

k (the other case follows a similar, slightly simplified, proof).
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E [Y] = E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E [Xi] =
n

∑
i=1

pi

=
n

∑
i=1

k(|vi|+ ε)

(‖v‖1 + Nε)
=

k
(‖v‖1 + Nε)

(
n

∑
i=1
|vi|+

n

∑
i=1

ε

)

=
k

(‖v‖1 + Nε)
(‖v‖1 + Nε) = k �

This modification of the TopK algorithm enables us to speed up the selection
of the k biggest items in expectation significantly, as only the calculation of
the L1 and L∞ norms need to take into account multiple values of the vector.
Afterwards, every item can either be selected, or omitted independently of
all the other values. This second step is easily parallelizable. Calculating
both mentioned norms in a parallel fashion is also feasible in an efficient
way, as we describe later in the implementation chapter.

We can even further speed up this algorithm by slightly changing the prob-
ability of selecting any index i. If one chooses pi = min{1, k|vi |

‖v‖1
}, the algo-

rithm would not select exactly k items in expectation anymore, but rather
at most k. This modification makes the calculation of the L∞ norm obso-
lete and shows to work very well when training text and language related
machine learning problems.
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Chapter 3

The Sparse AllReduce Problem

In this section, we formally introduce the sparse AllReduce problem. The well
understood collective operations AllGather and AllReduce are shown to be
specializations. We revisit algorithms used to solve those two problems and
come up with variants for the more general formulation. The main difficulty
for designing efficient algorithms is the unknown overlap of the non-neutral
indices and hence the size of the reduced result, which is highlighted in this
chapter. Assuming sparsity fractions and common-case input distributions
of the indices allow us to give performance guarantees for the designed
algorithms.

3.1 Formulation

This section introduces the analytical model used for runtime analysis, the
used notation and describes simplifications of the general formulation to
facilitate the analysis.

3.1.1 Analytical Model

We consider a simple α − β model which we use to characterize the cost
of point-to-point communication. The cost of sending a message of size L
is given by T(L) = α + βL, where both α, the latency of a message trans-
mission, and β, the transfer time per word, are constant. L represents the
datum size in words or bytes. This simple model omits the computation of
performing a reduction operation, as well as other architecture specific pa-
rameters. Even though more complex models such as LogGP [2] have been
proposed to address such shortcomings, we stick with this model for simplic-
ity and readability. Giving the exact, or at least proportional computation
costs needed in order to reduce two sparse vectors, poses an additional chal-
lenge: One needs to know not only the input size (number of non-neutral
elements) of both sparse vectors, but also the resulting sparse vector size
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p1

pi

pP

...

...

v1

vi

vP

+ v pi

p1

pP

...

...

Figure 3.1: The AllReduce Problem with summation

after having performed the reduction operation. Since our focus lays on re-
ducing the overall communication time, we ignore the computation terms
for simplicity.

3.1.2 Nodes and Elements

We consider a networked system where a set of P nodes P = {p1, . . . , pP}
can communicate via point-to-point links. Initially, each node is assigned a
subset of non-zero elements from an universe of size N. Let Hi denote the
set of non-neutral elements given at node pi. We assume that these sets are
sparse with respect to N, i.e. that k = maxi |Hi| � N. We further denote
di as the density of each set given by di =

|Hi |
N and define d = maxi di =

k
N .

The goal is to design an efficient communication algorithm to perform a col-
lective operation over all the non-neutral elements at the nodes with respect
to the semantics of the given operation. To simplify the exposition, we as-
sume in the following that the collective operation to be performed over all
sets is the sum, as illustrated in Figure 3.1. In general though, any associa-
tive and optionally commutative binary operator could be imaginable. In
our setting we can assume both properties, as they are given by sparse sum-
mation. Notice that the neutral element in this context is the value 0. The
‘non-neutral’ elements are therefore equivalent to ‘non-zero’ elements and
those two terms can be interchanged. Figure 3.2 illustrates the difference
between a commonly known dense AllReduce and its sparse variation. In
terms of mathematical formula, one defines the result each node has to have
after finishing the global reduction as v ∈ RN , with

v[z] =
P

∑
i=1, z∈Hi

vi[z] ∀z ∈ {1, . . . , N}.

The red part in the formula represents the difference between a sparse vector
reduction and, if one omits this term, its dense counterpart.

Given this setting, the goal is to perform an AllReduce operation over the el-
ements present initially at every node, while optimizing for communication
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Figure 3.2: Difference between dense and sparse AllReduce. The gray items
are neutral elements in the vectors.
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(b) AllGather

Figure 3.3: Specializations of sparse AllReduce. The gray items are neutral
elements in the vectors.

cost. That is, at the end of the execution, each node should have the correct
result locally, i.e. the element-wise sum over the N dimensions, while min-
imizing the total communication costs, measured in the α− β model above.
For analyzing the runtime of each algorithm, we assume that every node
starts the operation exactly at the same point in time, and the total duration
is defined as the interval until the last node receives its last message and, if
needed, has computed the reduction operation locally.

3.1.3 Generalization

Notice that the given definition of sparse AllReduce is a generalization of
both well known collective operations AllReduce and AllGather simultane-
ously. Only the sets of non-zero elements initially assigned to each node
distinguishes those problems. The AllGather collective is given if non of the
sets overlap: ∀i < j : Hi ∩ Hj = ∅. The resulting set of non-zero indices
therefore has size ∑P

i=1 |Hi|. On the other hand, the AllReduce problem is
given if Hi = Hj for all nodes i and j, that is, the sets fully overlap and there-
fore the reduced result has |H1| elements. If |Hi| = N for all i, we refer to
this problem as dense AllReduce. If |Hi| = k < N, we say that the problem
is equivalent to a dense AllReduce on a subspace of dimension k rather than
N. Those two specializations are illustrated in Figure 3.3.
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3. The Sparse AllReduce Problem

3.1.4 Simplification and Assumptions

Let us make some assumptions to facilitate the formulas derived in the sub-
sequent analysis of all the algorithms:

1. Every node contributes exactly k elements: ∀i : |Hi| = k

2. P is a valid power of 2 and P > 4

3. N is divisible by P.

Discussion

Even though these assumptions simplify the formulas, they do not oversim-
plify the problem. Ignoring the first assumption and having k = maxi |Hi|,
one gets an upper bound on each algorithm. This upper bound only makes
sense if we assume approximately an equal number of non-zero elements
at every node. Otherwise, one could imagine to design more specific algo-
rithms. If the second assumption does not hold, one can add two additional
steps in front and at the end of every algorithm to reduce the number of
participating nodes to the nearest lower power of two. Although this might
not be optimal (a dissemination approach [23] might be favorable), the cost
increases by some constant value and thus, we still get an idea about which
algorithm to prefer. If assumption (3) does not hold, each node gets responsi-
ble of bN

P c items apart of the last one, which is responsible of N− (P− 1)bN
P c

items.

3.2 Resulting Size

We realize, the difficulty of designing any efficient algorithms comes from
the fact that we neither know in advance the exact number of items every
node contributes, nor the size any intermediate, or the final result will have.
This data has to be communicated across the network. Those result sizes are
not only dependent on the amount of data contributed by each node, but
also alters with different positions of the non-neutral indices. We therefore
define the total number of non-zero elements after having performed the
overall reduction as

K = | ∪P
i=1 Hi|.

We make an additional assumption which holds typically in real world ex-
amples by omitting cancellation of indices. Even though theoretically incor-
rect, we assume no two values at the same position sum up neither in inter-
mediate, nor in the final result, to the neutral element 0. The probability of
this scenario to happen goes towards zero when working with floating point
values on real world examples. Obviously, in the context of summation,

k ≤ K ≤ min{N, P× k}

20



3.2. Resulting Size

holds, with both extremes representing the problem specializations, AllRe-
duce on a subspace of dimension k and AllGather respectively. If one as-
sumes an underlying probability distribution of the non-zero elements, one
can define the expected total number of non-zero elements E[K]. We there-
fore make use of N Bernoulli random variables Xj = 1, if index j ∈ ∪P

i=1Hi,
and Xj = 0 otherwise, for 1 ≤ j ≤ N. The random variable Y = ∑N

j=1 Xj
then represents the total number of non-zero entries after having performed
the reduction. So by using the linearity property of the expectation, we get:

E[K] = E[Y] =
N

∑
j=1

P
(

j ∈ ∪P
i=1Hi

)
.

The probability of any index j being an element of a distinct set Hi is given
by the underlying distribution. It is true for any distribution that:

P
(

j ∈ ∪P
i=1Hi

)
=

P

∑
i=1

P (j ∈ Hi)−∑
i<k

P (j ∈ (Hi ∩ Hk)) +

∑
i<k<l

P (j ∈ (Hi ∩ Hk ∩ Hl)) . . . + (−1)P−1P
(

j ∈ ∩P
i=1Hi

)
.

We further know from Union Bound that P
(

j ∈ ∪P
i=1Hi

)
≤ ∑P

i=1 P (j ∈ Hi),
which gives us a valuable upper bound on the expected number of non-
zero elements E[Y] ≤ ∑N

j=1 ∑P
i=1 P (j ∈ Hi). This bound is tight if ∀i < j :

Hi ∩ Hj = ∅, which is the special case where the problem reduces to an
AllGather.

3.2.1 Uniform Distribution

Having derived those formulas, we give more concrete values by assuming
a uniform distribution. This use-case gives a worst-case scenario in terms of
probabilistic growth of the intermediate results and it is reasonable to make
this assumption, if every index is hit with probability higher than 0. For this,
let Hi consist of k independent samples drawn from a uniform distribution

j ∼ U (1, N) ∀j ∈ Hi,

therefore P (j ∈ Hi) =
k
N . This is independent of the two indices i and j in

the above general formula, so E[K] ≤ N × P × k
N = P × k, which fits the

non-probabilistic upper bound given earlier. For the uniform distribution
one can give the exact expected number of elements by deriving a closed-
form function utilizing the previous equations

E[K] = f (k, N, P) = N ×
(

P

∑
i=1

(−1)i−1
(

P
i

)(
k
N

)i
)

.
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3. The Sparse AllReduce Problem

Figure 3.4: Expected size of reduced result assuming a uniform distribution
and N = 512

We make use of this function f in the next sections to give expected running
times assuming this specific distribution. Figure 3.4 illustrates the multi-
plicative growth dependent on both inputs, the number of nodes P and the
number of non-zero entries k at each node. To get a better feeling on how
the number of nodes and their input densities affect the expected size of the
result, we fix values for P and k additional to N and visualize the resulting
graphs in Figure 3.5. One thing to notice is that fixing either parameter does
not change the resulting graph much. This implies that the two parameters
act in a multiplicative way when calculating a growth factor.

3.3 Algorithms

We focus on designing algorithms for performing the sparse AllReduce col-
lective addition operation, for which we can give a reasonable analysis based
on the proposed α-β communication cost model. Notice that none of those
algorithms needs to have prior knowledge about the amount of data con-
tributed by each node, or the distribution of the non-zero indices. Neverthe-
less, based on those two variables and the number of nodes in the network
system, one can calculate the amount of non-zero indices after having per-
formed the collective reduction and thus decide upon which algorithm to
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(a) Fixing P = 32 (b) Fixing P = 128

(c) Fixing K = 4 (d) Fixing K = 16

Figure 3.5: Expected size of reduced result assuming a uniform distribution
and N = 512

choose in order to achieve least overall time.

3.3.1 Known Approaches

Our problem definition is a generalization of both known collection oper-
ations AllGather and AllReduce. We therefore give a quick overview of
commonly used algorithms for solving those two specialized problem set-
tings.

AllGather

The AllGather collective is a gather operation in which the data contributed
by each node is gathered to all machines instead of only one root node.
Assuming each participator contributes exactly k elements, lower bounds
in terms of our performance cost model on the AllGather collective are
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p1 p2 p3 p4 p5 p6 p7 p8

Stage 1:
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Figure 3.6: AllGather: Recursive Doubling Algorithm - Increasing amount
of data in each stage
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Figure 3.7: AllGather: Ring Algorithm

known [7] to be
log2(P)α + (P− 1)kβ.

Most MPI libraries such as MPICH1 distinguish between small message sizes
(total amount of data < 512 KB) and long messages (> 512 KB) for choosing
the appropriate algorithm [43]. For short messages, a recursive doubling
algorithm is used. Figure 3.6 illustrates how this algorithm works: In the
first round, nodes that are a distance 1 apart exchange their data. In the
second round, nodes that are a distance 2 apart exchange their data as well
as the data they received in previous rounds. Following this pattern, in the
t-th round, nodes that are a distance 2t−1 apart exchange all the previously
gathered 2t−1k data items. Therefore, this algorithm has a total time cost of

Tag rec dbl = log2(P)α + (P− 1)kβ

which satisfies the lower bounds on the latency and the bandwidth term.
At the same time, for long messages, a ring algorithm seems to perform
much better than a recursive doubling algorithm. The ring performs (P− 1)
steps. In the first step, node i sends its data to the node with rank i + 1 and

1http://www.mpich.org/
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receives the data from the node i− 1 (with wrap around). In the next steps,
the data received in the previous step is sent to the according neighbor. This
communication pattern is illustrated in Figure 3.7. The total cost of this
algorithm is

Tag ring = (P− 1)α + (P− 1)kβ.

Even though this implies a higher bandwidth term compared to the recur-
sive doubling algorithm, it is believed that the algorithms performance in-
crease for large data comes from different communication patterns of the
two algorithms: In the ring algorithm, nodes only communicate with near-
est neighbors, whereas in the recursive doubling case, nodes which are far
apart have to exchange a lot of data in the later steps.

AllReduce

The AllReduce collective performs a global reduction operation and dis-
tributes the result to all the nodes. It can be seen as a reduce operation
to a dedicated root followed by a Broadcast to all the other nodes. Assume
each node has a vector of size k. The lower bound in terms of the α − β
model is [34]

log2(P)α + 2
P− 1

P
kβ.

For quite small messages (total amount of data < 2 KB), custom operations,
or if k is smaller than the number of nodes P, the implementation falls back
on a recursive doubling algorithm similar to the one described previously
for the AllGather collective. The amount of data communicated at each step
remains constant (k items), as the reduction operation is performed after
each step. The total time for this algorithm is therefore

Tar rec dbl = log2(P)α + log2(P)kβ.

The lower bound for the latency term is reached, but not for the bandwidth
part. For a larger amount of data, one wishes to achieve a lower bound
on the bandwidth term. Thus Rabenseifner’s algorithm is used for that
case [36], which solves the AllReduce problem in two steps. A ReduceScatter
implemented by a recursive halving algorithm is first applied. Afterwards,
the reduced data is gathered from all, to all other nodes by calling a recur-
sive doubling algorithm as described above. Figure 3.8 illustrates how the
ReduceScatter operation works. This two step algorithm has a total runtime
of

Tar rab = 2 log2(P)α + 2
(P− 1)

P
kβ,

which reaches the lower bound on the bandwidth term as desired.
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Figure 3.8: AllReduce: Recursive halving for ReduceScattter - Decreasing
amount of data in each stage

3.3.2 Dense vs. Sparse Representation

Although we focus on a sparse problem formulation, namely k � N, the
size of the resulting vector can be such that the algorithm does not benefit
of a sparse representation anymore, or even K might become equal to N.
Let isize be the number of bytes needed to represent a value in the space
of dimension N. We further define c to be the amount of bytes needed to
store a sparse index. Over the entire dimension N, c ≥ d log2(N)

8 e bytes are
at least needed to store every index. As the amount of data consists of k
sparse elements, this gives a total of c× k + k× isize = (c + isize)k bytes to
be transmitted compared to N × isize bytes, if one opts for a dense vector
representation. From this fact, going for a sparse representation only helps
reducing the communication time if k ≤ δ = N×isizse

(c+isizse) regarding the size
of data transmitted. This formula does not take into account, in practice,
applying the reduction operation on dense consecutive items can be signif-
icantly faster than working with sparse data. This fact forces the threshold
δ to be even smaller, in order to speed up the algorithm. We give some em-
pirical measurements in the experiment section supporting this claim. We
assume k to be smaller than this threshold. But this does not necessarily
imply K to be below that value as well. On the contrary, if dealing with a
big number of nodes P, K will most probably lie above this threshold. Re-
minding ourselves that we usually do not know the exact value of K, we use
its upper bound to differentiate between two types of sparse AllReduce sub-
genres: static sparse AllReduce (SSAR) and dynamic sparse AllReduce (DSAR).
The static case assumes that K remains below δ. For the dynamic instance, we
know K ≥ δ. We omit both values c and isize defined above, in the analysis
of the sparse AllReduce algorithms given next. isize can simply flow into the
constant β. The unit of sent items is no longer words or bytes, rather isize
bytes. The amount needed for storing a sparse index can be incorporated
into the parameter k. Having the formula for running time dependent on k,
one could simply plug in the values k× (1 + c

isize ) instead of k, in order to
get accurate results.
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Figure 3.9: Static Sparse AllReduce: Recursive doubling - Increasing amount
of sparse data in every stage

3.3.3 Static Sparse AllReduce

The size of the final result remains below the threshold value δ. Clearly it is
true that N � δ, this implies that K = k× P < δ must hold. Therefore, even
the final result is kept in a sparse format, and we give a lower bound on the
bandwidth term any algorithm needs in order to successfully terminate the
SSAR problem:

Lemma 3.1 Any algorithm solving the SSAR problem needs at least a duration of
log2(P)α + (P− 1)kβ if K = k, and log2(P)α + 2 P−1

P kβ if K = k× P.

Proof The proof follows directly from the fact that the lower bound is known
for both specializations of the sparse AllReduce problem: AllGather if K =
k× P and subspace dense AllReduce if K = k. �

Inspired by both aforementioned algorithms for solving the AllReduce and
AllGather problems, we differ between two algorithms to solve the SSAR
problem. One for small messages, and the other one for a larger amount of
data. Again, the exact threshold is defined empirically due to the simplified
communication cost model and all the problem-specific unknown variables.

SSAR Rec Dbl

For small messages, we design a recursive doubling algorithm as visualized
in Figure 3.9. After every stage, a sparse vector summation on the received
and local data has to be performed. The latency is

L(P) = log2(P)α

for this algorithm, as there are log2(P) stages. This part is data-independent.
The runtime for this algorithm lies in the range

L(P) + log2(P)kβ ≤ Tssar rec dbl ≤ L(P) + (P− 1)kβ.

The lower bound is given when the k indices fully overlap. Therefore, at ev-
ery stage, k items need to be transmitted as the intermediate results maintain
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Figure 3.10: Static Sparse AllReduce: Uniform splitting of a sparse vector.
The light gray items are neutral elements with value 0 and therefore are not
sent

constant size. The upper bound is given when the indices do not overlap at
all. Therefore, at stage t, the amount of items transmitted is 2t−1k. Taking
the sum, we get

log2(P)

∑
i=1

2t−1k = k
1− 2log2(P)

1− 2
= k(P− 1).

Having an underlying uniform distribution of the data, one obtains an ex-
pected running time of

E[Tssar rec dbl ] = L(P) + β
log2(P)

∑
i=1

f (k, N, 2i−1).

Even though the latency term reaches the lower bound, the bandwidth term
might get significantly larger than other algorithms can achieve.

SSAR Split AlGa

If the overall data is large, we separate the algorithm similarly to Raben-
seifner’s version into two steps: a Split and sparse AllGather phase. For the
Split part, we uniformly divide the dimension of the space N by P and de-
fine each node to be responsible of indices contained in the corresponding
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subspace. Figure 3.10 illustrates this act on a sparse vector. We split each
sparse vector at its node and directly send the part to the corresponding
recipient again in a sparse format. Figure 3.11 depicts this communication
pattern. Each node then sums up the data received and builds the result
for the distinct part of the entire vector. The data has to be gathered to all
other nodes finally. This sparse AllGather is executed by a recursive doubling
algorithm similar to the previously described variant, with the difference
that the summation of two intermediate results is equivalent to a concatena-
tion of both sparse vectors, contrary to the previously described algorithm,
where indices might overlap. Giving bounds and expected running times of
this algorithm is slightly more involved. The Split part takes

(P− 1)α + 0β ≤ Tsplit ≤ (P− 1)α + kβ.

Notice that both extremes imply that each node has k items for the sparse
AllGather, and thus K = k× P is reached. For this second step in the algo-
rithm to be minimal though, every node must have an intermediate result
of size k

P , as we want the final result to have a size K = k and the communi-
cation to be equally distributed. This is simply provable by contraction and
making use of the pigeonhole principle. For every node to have an interme-
diate result of the desired size, we know that each node has to send at least
P−1

P k items to other nodes. Otherwise, if every node has exactly k items, we
reach the upper bound for the result size of K = k× P. So we get

log2(P)α +
P− 1

P
kβ ≤ Tsparse ag ≤ log2(P)α + (P− 1)kβ.

The latency
L(P) = ((P− 1) + log2(P))α

for the entire algorithm is again data-independent. Combining those terms
yields to

L(P) + 2
P− 1

P
kβ ≤ Tssar split ag ≤ L(P) + Pkβ.

Not having any knowledge about the distribution hinders us to give better
bounds. Assuming this to be uniform, one can state the expected runtime

E[Tssar split ag] = L(P) +
(

P− 1
P

k + (P− 1) f
(

k
P

,
N
P

, P
))

β.

3.3.4 Dynamic Sparse AllReduce

As emphasized previously, the size of the result K might become bigger
than the threshold δ, representing the point after which one should rather
switch to a dense representation and replenish with neutral elements (zero
in the case of summation).
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Figure 3.11: Direct sparse send AllToAll

Theorem 3.2 Any algorithm solving the DSAR problem needs at least a duration
of log2(P)α + Nβ.

Proof As every node needs to communicate to every other node directly or
indirectly, there is at least one node communicating to log2(P) other nodes.
For the bandwidth term, every node needs to send its k items. As the size
of the resulting vector increases such that it eventually has no sparse rep-
resentation anymore, each node has to receive or send at least N − k items.
Taking the sum results in Nβ on the bandwidth term. �

From this observation we further derive the following lemma.

Lemma 3.3 The bandwidth required by any algorithm solving the DSAR problem
is at least 1

2 the minimum bandwidth required by a dense AllReduce for the same
problem.

Proof Notice that the dense AllReduce has a lower bound of 2 P−1
P Nβ on

the bandwidth. From Theorem 3.2 we know that every DSAR algorithm has
a minimum bandwidth term of Nβ, which is obviously bigger than P−1

P Nβ
for any P. �

This lemma tells us, if the resulting size K is bigger than the threshold δ, one
can only hope to get a speedup of factor 2 compared to an optimal dense
AllReduce algorithm, when focusing on the bandwidth term.

DSAR Split AG

Based on this fact, we adopt the algorithm SSAR Split AlGa to force every
split to become dense. So, even though the data is received from the other
nodes in a sparse format, both, the summation and more important the sec-
ond step of the algorithm, the AllGather, are fulfilled relying on a dense
format. There are already highly optimized algorithms to perform this sec-
ond step with dense data and reaching the lower bounds on both bandwidth
and latency terms. We therefore do not further investigate this topic here.
The Split part takes again a runtime of

(P− 1)α + 0β ≤ Tsplit ≤ (P− 1)α + kβ.
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Stage 3:

Figure 3.12: Early Switching DSAR - Groupsize 2

As we force every splited results to become dense, there is no data depen-
dency anymore after having performed this first part of the algorithm. Based
on the known times needed by a dense AllGather, we derive the running
time for our algorithm given both extremes. The latency is given by

L(P) = ((P− 1) + log2(P))α.

Combined, we get

L(P) +
P− 1

P
Nβ ≤ Tdsar split ag ≤ L(P) +

(
k +

P− 1
P

N
)

β.

Assuming a uniform distribution of the data, one can give an expected run-
time, which only affects the Split part

E[Tdsar split ag] = L(P) +
(

P− 1
P

(k + N)

)
β.

Early Switching DSAR

We extend the idea of Dynamic Sparse AllReduce (DSAR) as visualized in
Figure 3.12 and 3.13. Intuitively, if one somehow has come to know that the
size of every intermediate result on a subset of the nodes P is larger than
the dense threshold δ, one could force the vectors to become dense earlier in
the reduction structure. From that point, the last steps of a classical dense
ReduceScatter implemented by a recursive halving algorithm can be carried
on as depicted in Figure 3.8. We verify empirically in the experiment section,
that this idea further lowers the overall runtime at a high number of nodes.

3.3.5 Discussion

One might ask the question: Why should we use a direct AllToAll instead
of a recursive halving like algorithm for the Split part in the aforementioned
algorithms? Even though we clearly are optimal on the bandwidth term, the
one we care most about comes at a price of high latency. Nevertheless, those
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Stage 2:
Stage 3:

Figure 3.13: Early Switching DSAR - Groupsize 4

costs are in practice less relevant if we work with non-blocking function calls,
and thus enable overlapping of computation and communication. We give
more implementation related details in the according chapter.

Runtime Summary

Table 3.1 summarizes the results stated so far and gives a comparison be-
tween not only all the algorithms, but also the lower bounds and the defined
baseline dense AllReduce. We have a verification and empirical determina-
tion of the switching points for those algorithms in the experiment chapter
based on synthetic micro benchmarks.
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Chapter 4

Implementation

In this section we describe the most important parts implemented in the
scope of this work. We justify the choice of the previously mentioned al-
gorithms by showing how their code can be written efficiently. We focus
mainly on the following three parts contributed in of this thesis:

1. Implementation of the aforementioned sparse AllReduce algorithms in
a library

2. Development of a lightweight and generic machine learning frame-
work named MPI-SGD for training large scale linear classifiers (and
others) on supercomputers with fusion of the above library

3. Incorporating the suggested TopK SGD variant and the sparse AllRe-
duce library efficiently in the deep learning framework CNTK.

Notice that point two and three are completely independent of each other.

4.1 Sparse AllReduce Library

The aforementioned algorithms are implemented fully in C++11. The header-
only files form a library with interfaces similar to those defined in the MPI-3
standard. In order to achieve the best possible speedup, a few points have
to be considered whilst implementing the algorithms. The library is used
in MPI-SGD and therefore fully accessible through the repository of that
framework.

4.1.1 Sparse Vector Representation

Even though there are plenty of different representations for sparse matrices,
see Bell et al. [33] for a complete overview, currently there does not exist so
much related work for sparse vector representations. Notice that we do
not want to specifically encode (lossy or lossless) our sparse vectors in this
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work. Albeit, this could further reduce the amount of data communicated,
it comes at a cost of additional computation for decoding. As a simple
representation, we therefore opt for storing every index of the non-neutral
elements in addition to those actual values. There are two simple ways for
storing all those values in memory:

• Store a vector of all indices followed by a vector of all values

• Store a single vector consisting of index-value pairs.

Regardless of the method, we assume that all the indices are stored in an or-
dered way. Whilst both variants need the same amount of space, they have
their dis- and advantages. We highlight those on the summation of two
sparse vectors, as this is the main use case in our applications. When deter-
mining the overlap of indices based on two sparse vectors, one would favor
the first representation, as the values themselves are not moved to the cache
by the prefetcher. This specific operation without directly accessing the val-
ues is nevertheless not used in our implementation. There is one operation
which clearly makes the second variant preferable: In the second part of the
SSAR Split AlGa algorithm, we perform an AllGather operation of sparse
sub-vectors. Those sub-vectors are again potentially sparse and follow this
representation. As the vectors represent distinct, but consecutive subspaces
of the entire space, building the sum of two of them simply reduces the prob-
lem to a concatenation when using the second variant for the representation.
This can be implemented efficiently by calling a memory copy instruction.
If one opts to use the first variant, the first vector consisting of all the indices
would have to be enlarged, and thus additional memory movement would
be needed. This clear advantage leads us to the decision of choosing the sin-
gle index-value pair vector as a representation for every sparse vector. We
omit the analysis of other variants for representations such as linked-lists,
which offer faster summation, but have the disadvantage of being stored in
a non-consecutive manner in memory. Therefore, one would need to copy all
the values before sending them to other nodes, as MPI requires consecutive
values in memory, or at least known constant gaps between them.

Obviously, the datatype of the values yields the amount of bits we need
for every non-neutral value. Usually, we either work with single (32 bits)
or double precision floating point values (64 bits). We stated previously, de-
pending on the dimension N of the space, we need at least dlog2(N)e bits for
storing an index value. Additionally, when using one of the split methods,
we generate sparse vectors on subspaces of dimension N

P each. This implies
that we need at least dlog2(

N
P )e additional bits per non-neutral element for

representing their index in the subspace. Although theoretically correct, we
want to make use of state of the art C++11 positive integer datatypes such
as unsigned char (8 bits), unsigned short (16 bits), unsigned integer (32
bits) or unsigned long (64 bits). The biggest index each one of these types
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can store is 256, 65k, 4b (billions) and 1.8× 1019 respectively. While the last
one is clearly oversized for all our problems, having N > 65k is almost al-
ways the case in all our large scale examples. Hence, we fix the datatype
for storing an index to an unsigned integer using 32 bits. As we fully
implement our code in native C++11, we make use of templates in order to
define both, the types of each value and index. The example code is given
in Listing 4.1.

4.1.2 Auto-switch to Dense Format

We saw that storing sparse vectors in the previously mentioned way intro-
duced an overhead per non-neutral element. Additionally, in the context of
sparse AllReduce, we assume the input to be sparse initially. Due to lack of
exact knowledge on the amount contributed by each node and their respec-
tive distribution of the indices, we cannot tell whether the final, or even in-
termediate results, might need more space than a fully dense representation.
In order to prevent this to happen at every point in our algorithm, we add
an extra value in front of every sparse vector. This value called nofitems in-
dicates the number of items stored in our stream representing either sparse
or dense vectors. We define such a stream to represent a dynamic array of
either s_item’s if nofitems 6= N, or a dynamic array of ValTypes’s other-
wise. Listing 4.1 illustrates this extra value as well as its usage in the given
function countBytes.

Listing 4.1: Sparse vector stream with function for counting the number of
bytes needed

1 template <class IdxType , class ValType >
2 struct s_item {
3 IdxType idx;
4 ValType val;
5 };
6
7 struct stream {
8 unsigned nofitems;
9 char items []; // Will be casted in either (struct s_item *) or (ValType *)

10 };
11
12 template <class IdxType , class ValType >
13 size_t countBytes(const struct stream *s, unsigned dim) {
14 if(s->nofitems == dim) {
15 return sizeof(unsigned) + s->nofitems * sizeof(ValType);
16 }
17 return sizeof(unsigned) + (s->nofitems * (sizeof(IdxType) + sizeof(ValType)));
18 }

When allocating such a stream in memory for a vector in dimension N (for
the split parts, the dimension is N

P ), we always request sizeof(unsigned)+
(N × sizeof(ValType)) bytes. It is therefore never possible to store more
than b N×sizeof(ValType)

sizeof(ValType)+sizeof(IdxType)c sparse items. We will refer to this num-
ber as ϕ(N) in the following sections. This threshold is used to automati-
cally switch the representation from sparse to dense. The library therefore
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checks prior to every size-changing operation, whether the format should
be adopted.

4.1.3 Sparse Vector Summation

Whilst justifying the way we represent our sparse vectors, we mentioned
the operation which is performed within this library: The addition of two
such vectors. Notice that the neutral element for this operation is 0, i.e.
non-neutral and non-zero elements are equivalently readable. If we look at
the summation of two dense vectors of identical size, there are numerous
ways to speed up the calculation such as SIMD (single instruction, multiple
data) instructions and cache prefetching by carefully iterating over the val-
ues. This enables the summation of dense vectors to be extremely efficient
and almost impossible to beat in terms of speed if working with the same
amount of sparse values. We nevertheless investigate several methods for
summing up streams as most efficiently as possible. For this purpose, we
differentiate between two scenarios if summing up two vectors u1 and u2:

1. u1 and u2 do potentially overlap and are elements of RN

2. u1 and u2 are elements of distinct R
N
P , hence do not overlap at all.

The dimension of the space the vectors are contained in, is relevant for the
complexity specifications. Notice that in the first case, the result u1 + u2 will
again be in RN , whilst in the second case it will be in R

2N
P . For both cases

we further have to distinct between four different scenarios:

(a) Both u1 and u2 are sparse

(b) Both u1 and u2 are dense

(c) u1 is dense and u2 sparse

(d) u1 is sparse and u2 dense.

Next, there is a description for each one of the eight possibilities. We denote
H1 and H2 to be the sets containing the indices of non-neutral elements for
both vectors u1 and u2 in the sparse case. For all the variants of potential
overlapping indices (1), we give an example function which could perform
the addition. Listing 4.2 represents the function declaration used for this
purpose.

Listing 4.2: Potentially overlapping stream summation - Function declara-
tion

1 template <class IdxType , class ValType >
2 struct stream * sum_into_stream(struct stream *first_s , struct stream *second_s ,

struct stream *tmpbuf , unsigned dim) {
3 unsigned p1 = 0;
4 unsigned p2 = 0;
5
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6 unsigned len_first = first_s ->nofitems;
7 unsigned len_second = second_s ->nofitems;
8
9 // Distinction based on len_first and len_second

10 }

1.a First, we have to check whether the result might become dense or not.
Theoretically, one would therefore need to calculate the size of the union of
non-zero indices |H1 ∪H2|. This is already computational intensive and thus
we rely on an upper bound of this result namely |H1|+ |H2|. If this value is
bigger than ϕ(N), we force the result to be dense. We also need to initiate
a new stream and set all the values based on every index z ∈ {1, . . . , N}. If
z /∈ H1 ∪ H2, we set it to the neutral element 0. If z ∈ H1 ∩ H2, it gets the
value of u1z + u2z . Finally if z is only present in H1 or (exclusively) in H2, it
gets the value at the index of the corresponding vector. If the upper bound
on the size remains below ϕ(N), we proceed identically, but with omitting
all the indices z /∈ H1 ∪ H2. The complexity for both computation and space
in the dense case is O(N) and in the sparse case at most O(|H1| + |H2|).
The code for this is given in Listing 4.3.

Listing 4.3: Potentially overlapping stream summation - Both input sparse
1 // access first sparse and second sparse
2 struct s_item <IdxType , ValType > *first = (struct s_item <IdxType , ValType > *)

first_s ->items;
3 struct s_item <IdxType , ValType > *second = (struct s_item <IdxType , ValType > *)

second_s ->items;
4
5 if(( len_first + len_second) * (sizeof(IdxType) + sizeof(ValType)) >= dim *

sizeof(ValType)) {
6 // Make dense in temp buf and return that
7
8 tmpbuf ->nofitems = dim;
9 ValType * const __restrict__ result = (ValType *)tmpbuf ->items;

10
11 #pragma omp simd
12 for(size_t i = 0; i < dim; ++i) {
13 result[i] = 0.0;
14 }
15
16 // Sum sparse vector
17 while(p1 < len_first || p2 < len_second) {
18 if((p1 == len_first) || (p2 != len_second && (second[p2].idx < first[p1].idx

))) {
19 result[second[p2].idx] = second[p2].val;
20 p2++;
21 } else if((p2 == len_second) || (first[p1].idx < second[p2].idx)) {
22 result[first[p1].idx] = first[p1].val;
23 p1++;
24 } else {
25 // index of receiver as index of sender must be equal
26 result[first[p1].idx] = first[p1].val + second[p2].val;
27 p1++;
28 p2++;
29 }
30 }
31
32 return tmpbuf;
33 } else {
34 // Result will be sparse
35 int newLen = 0;
36 struct s_item <IdxType , ValType > *result = (struct s_item <IdxType , ValType > *)

tmpbuf ->items;
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37
38 // Sum sparse vector
39 while(p1 < len_first || p2 < len_second) {
40 if((p1 == len_first) || (p2 != len_second && (second[p2].idx < first[p1].idx

))) {
41 result[newLen ].idx = second[p2].idx;
42 result[newLen ].val = second[p2].val;
43 p2++;
44 } else if((p2 == len_second) || (first[p1].idx < second[p2].idx)) {
45 result[newLen ].idx = first[p1].idx;
46 result[newLen ].val = first[p1].val;
47 p1++;
48 } else {
49 // index of receiver as index of sender must be equal
50 result[newLen ].idx = first[p1].idx;
51 result[newLen ].val = first[p1].val + second[p2].val;
52 p1++;
53 p2++;
54 }
55 newLen ++;
56 }
57
58 tmpbuf ->nofitems = newLen;
59 return tmpbuf;
60 }

1.b If both vectors are already dense, one can rely on a dense vector sum-
mation and does not need to allocate a new stream, but can rather sum the
results inplace into either u1 or u2. The complexity is O(N). The code is
given in Listing 4.4.

Listing 4.4: Potentially overlapping stream summation - Both input dense
1 if(len_first == dim && len_second == dim) {
2 // Sum second into first return first
3 ValType *first = (ValType *)first_s ->items;
4 const ValType * const __restrict__ second = (const ValType *)second_s ->items;
5
6 #pragma omp simd
7 for(size_t i = 0; i < dim; ++i) {
8 first[i] += second[i];
9 }

10 return first_s;
11 }

1.c / 1.d Both cases are symmetric. One has to iterate over all the index-
value pairs stored in the sparse vector and has to set the value at the cor-
responding position in the dense vector. No additional memory has to be
allocated and the computation complexity is O(|H1|) and O(|H2|) respec-
tively. The code is given in Listing 4.5.

Listing 4.5: Potentially overlapping stream summation - One input sparse
1 if(len_first == dim) {
2 // Sum second into first return first
3 ValType * first = (ValType *)first_s ->items;
4 const struct s_item <IdxType , ValType > *second = (const struct s_item <IdxType ,

ValType > *)second_s ->items;
5
6 for(size_t i = 0; i < len_second; ++i) {
7 first[second[i].idx] += second[i].val;
8 }
9 return first_s;
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10 }
11
12 if(len_second == dim) {
13 // Sum first into seconnd return second
14 const struct s_item <IdxType , ValType > *first = (const struct s_item <IdxType ,

ValType > *)first_s ->items;
15 ValType *second = (ValType *)second_s ->items;
16
17 for(size_t i = 0; i < len_first; ++i) {
18 second[first[i].idx] += first[i].val;
19 }
20 return second_s;
21 }

For the scenario (2) where there is no overlap, we give similar explanations
on how this is implemented efficiently. Notice that the code is much more
complicated due to the fact that N might not be properly divisible by P. This
introduces several additional checks which makes the code hard to read and
is therefore not included into this document.

2.a The result remains sparse as the dimension is doubled and both values
satisfy |H1| ≤ ϕ(N

P ) and |H2| ≤ ϕ(N
P ). Due to linearity in ϕ, it holds that

|H1|+ |H2| ≤ 2× ϕ(N
P ) = ϕ( 2N

P ). In order to prevent additional memory al-
location and movement at the same time, we need to determine which sparse
vector has values with smaller indices (all the indices are either smaller or
bigger in one or the other vector). If this is the case for u1, we can copy
all the index-value pairs from u2 to the end of u1, increase the number of
elements in u1 by the amount of pairs found in u2, and return u1 as the
resulting stream. Otherwise, we perform the same procedure simply by
interchanging u1 and u2. The complexity is either O(|H2|) or O(|H1|).

2.b This scenario is identical to 2.a. As we do not have any indices though,
we need to know which dense vector represents which subspace in oder to
concatenate the values in the correct order. The complexity for both cases is
O(N

P ).

2.c / 2.d Those two cases are slightly more complicated. If we assume
that we need the same number of bits to store an index and a value element
(sizeof(IdxType) = sizeof(ValType)), it implies that ϕ(N) = N

2 . As a
consequence, ϕ( 2N

P ) = N
P . As one of both vectors is dense, it contributes N

P
items and the overall resulting size is even higher. Thus, the concatenated
result itself should again be stored in a dense format. Only if the vector
from the subspace with smaller indices is the dense one, we can set the
consecutive N

P values to either 0 or take the value from the second sparse
vector. Otherwise, we need to allocate additional space, set all the values
coming from the sparse vector as well as performing a memory copy of
all the dense values. The overall complexity in space and computation is
therefore given by O( 2N

P ).
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4.1.4 Computation and Communication Overlap

As mentioned before, we decided to implement the Split part by sending
directly all the values each node gets responsible for to its intended desti-
nation. This causes the highest imaginable latency costs of (P− 1)α, where
a recursive halving like algorithm could potentially reach a lower bound at
log2(P)α. Nevertheless, such an algorithm splits its stream, exchanges parts
of the data with another node, calculates the sum into its stream based on
the received data and start over again. This is a purely sequential behav-
ior and there is no room for overlapping computation and communication.
Opting for a direct all-to-all method, one can nicely overlap the computation
and communication costs. After having split its stream by linearly iterating
over it, each node sends the part of the data to every node it is responsible
for, using a non-blocking MPI call. As a consequence, every node is able to
perform the stream summation on sparse vectors of dimension N

P as soon as
the first results are completely received. Sample code for overlapping this
communication and computation parts, whilst making use of the previously
described inplace sparse vector summation function, is given in Listing 4.6.

Listing 4.6: Overlap computation and communication with sparse inplace
summation

1 struct stream *tmpbuf = NULL;
2 int pending = worldsize -1;
3 while(pending > 0) {
4 int index;
5 MPI_Status status;
6 MPI_Waitany(worldsize -1, &requests [0], &index , &status); // request should be

automatically changed to MPI_REQUEST_NULL by Waitany
7 if(index == MPI_UNDEFINED) {
8 printf("Unexpected error!\n");
9 MPI_Abort(MPI_COMM_WORLD , 1);

10 }
11
12 tmpbuf = sum_into_stream <IdxType , ValType >(mytmp1 , recvs[index], mytmp2 , dim);
13 if(tmpbuf == recvs[index ]) {
14 recvs[index] = mytmp1;
15 mytmp1 = tmpbuf;
16 } else if(tmpbuf == mytmp2) {
17 mytmp2 = mytmp1;
18 mytmp1 = tmpbuf;
19 }
20
21 pending --;
22 }

4.1.5 Non-Blocking Variants

As described in section 2.3.4, CNTK implements the gradient aggregation
of every tensor separately using non-blocking CUDA and MPI calls. As
MPI offers the usage of non-blocking collectives such as IAllReduce (the I
indicates this is a non-blocking call), we need to come up with non-blocking
variants of the algorithms in order to incorporate them into CNTK. We make

42



4.2. MPI-SGD

use of the framework LibNBC1 for this purpose. LibNBC is a prototypic
implementation of a nonblocking interface for MPI collective operations. We
follow the documentation given by Hoefler et al. [25]. As there are missing
parts for handling our previously described streams for sparse and dense
vector representation, slight modifications to the original code have to be
performed.

4.2 MPI-SGD

This framework is built entirely in native C++11 without the need of linking
any external libraries neither dynamically, nor statically. The starting point
for implementing data-parallel SGD is the code developed by the authors of
Hogwild! [37], especially the header-only library given by the Hazy project
at Stanford lead by Christopher Re2. Parts of this library need to be adopted
and thus are completely rewritten. Some files are still being used though,
and are therefore properly integrated and referenced in MPI-SGD in a sep-
arate folder. We do not give an entire documentation of MPI-SGD in this
work, but mainly focus on an overview over some features and highlight
the generic way for implementing both, new loss functions and different ag-
gregation strategies. The major feature of MPI-SGD is to run data-parallel
SGD on multiple compute nodes communicating via any MPI library. To
this end, the following main functionalities are implemented in this frame-
work:

1. Efficient distributed read of any dataset converted in the predefined
format using MPI-IO

2. Run data-parallel SGD on multiple compute nodes (communicating
using MPI functionalities) simultaneously with multiple threads on
every machine (communicating through shared memory)

3. Implementation of two learning rate adaptation strategies

4. Incorporate proper profiling for getting distinct values for the entire
running time per epoch, the time spent for computation and commu-
nication respectively

5. Train linear models for regression and classification

6. Use various gradient aggregation strategies representing sparse, dense,
synchronous and asynchronous variants of AllReduce and parameter-
server patterns.

The last two points are implemented in a generic way, such that one could
rapidly extend the framework by adding any additional arbitrary model and

1https://htor.inf.ethz.ch/research/nbcoll/libnbc/
2http://i.stanford.edu/hazy/victor/Hogwild/

43

https://htor.inf.ethz.ch/research/nbcoll/libnbc/
http://i.stanford.edu/hazy/victor/Hogwild/


4. Implementation

aggregation strategy without having to change any other parts. We give a
short overview of both those features in the next sections.

MPI-SGD is available in a Gitlab repository3 and has to be considered as
prototypic. That is, the author does not take any responsibilities for possible
bugs in the code or not yet fully implemented functionalities. The repository
contains various branches as this framework is used to run tests in several
other projects.

4.2.1 Linear Models

Every linear model in MPI-SGD is called an app and its header file imple-
mentation is stored in a folder by the same name. As by the date of delivery,
three models are implemented: linear regression, logistic regression and
support vector machines. In order to add any additional model, a new class
has to be written which implements the three methods shown in Listing 4.7.

Listing 4.7: Example model execution class
1 #ifndef _EXAMPLE_MODEL_EXEC_H
2 #define _EXAMPLE_MODEL_EXEC_H
3
4 #include "hazy/vector/dot -inl.h"
5 #include "hazy/vector/operations -inl.h"
6
7 class ExampleModelExec
8 {
9 public:

10 static void CalcModelUpdate(LinearModelSample const * const &samples , size_t *
current_batch , size_t actual_num_elements_in_batch , LinearModel *model ,

LinearModelParams const &params , unsigned tid) { ... }
11
12 static fp_type SingleLoss(const LinearModelSample &s, LinearModel *m) { ... }
13
14 static fp_type ComputeMetaLoss(const LinearModelSample &s, LinearModelParams

const &params) { ... }
15 };
16
17 #endif

The function CalcModelUpdate calculates the gradient based on the loss
function and the current weight vector. The result has to be stored into
the variable local_gradients[tid] in the model object. SingleLoss re-
turns the loss for a given sample based on the current model weight vector.
ComputeMetaLoss on the other hand returns the loss based on the true model
parameters. Furthermore, in order to generate the binaries for a new app, a
single line cpp file has to be created, which calls the run method in the
linearmodel_exec class with the previously mentioned executor class as a
template argument. The main file has then to be added to the Makefile in
order to generate all the variations for this new app.

3http://www.gitlab.com/crenggli/MPI-SGD
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4.2.2 Aggregation Strategies

The implemented aggregation strategies are saved in the folder src/strategy.
As by the date of delivery, the following gradient aggregation strategies are
implemented: AllReduce, ParameterServer synchronous, ParameterServer asyn-
chronous and sparse AllReduce. The last one is further divided into the three al-
gorithms described earlier in this document by using preprocessor variables.
Every strategy has to inherit from the fully virtual class Executor. Therefore,
all the functions one has to implement are visualized in Listing 4.8.

Listing 4.8: Example aggregation strategy
1 #ifndef _EXAMP_STRAT_H
2 #define _EXAMP_STRAT_H
3
4 #include "executor.h"
5
6 template < class Model , class Params , class Sample , class Loader , class Exec >
7 class ExampleStrategy : public Executor <Model , Params , Sample , Loader , Exec >
8 {
9 public:

10 ExampleStrategy () : Executor <Model , Params , Sample , Loader , Exec >() { ... }
11
12 int GetWorkerNumber () { ... }
13
14 void GetModel(hazy::util::Clock &communicate_timer) { ... }
15
16 void SendModelUpdate(hazy::util::Clock &communicate_timer) { ... }
17
18 void PreEpoch(hazy::util::Clock &communicate_timer) { ... }
19
20 void PostEpoch(hazy::util:: Clock &communicate_timer) { ... }
21
22 void InitStrategy () { ... }
23 };
24
25 #endif

The names of the functions are mostly self-explanatory. InitStrategy is
called once at the beginning of the execution. PreEpoch and PostEpoch are
called before and after each epoch respectively. The function GetWorkerNumber

is used if there is one or multiple servers in the parameter-server paradigm.
Therefore, each worker has to be assigned an unique id starting at 0, which
is handeled by this function. In an epoch, the new model is always received
by the worker calling GetModel. After having calculated the gradient for
a minibatch, the worker (or every worker) calls SendModelUpdate to either,
send the updates to the server, or perform an AllReduce with all the other
nodes. Notice that in the AllReduce case, getting the new model befor calcu-
lating the gradient becomes obsolete, so this function can just be left empty.
Every new strategy has to be inserted into the Makefile and put into the
class LinearModelExec, which serves as an executor class for all apps and
can be found in that coresponding folder.
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4.3 CNTK Extensions

We briefly describe the changes we have to perform in CNTK. The code is
integrated in a custom branch on a fork from the original CNTK started by a
former student of the supervisor4. The main functionalities implemented in
various branches of this fork concern QSGD [3]. As described previously, we
aim to implement TopK SGD into CNTK and as a consequence, we want to
aggregate the naturally or enforced sparse gradients by making use of the
non-blocking versions of sparse AllReduce described in the prior sections.
Similar to the present code introducing QSGD into CNTK, we adopt the
base version of 1-bit SGD implemented in the original code to TopK SGD.

4.3.1 Brainscript Parameters

For this goal, we have to introduce additional brainscript parameters. Namely,
the number of elements per bucket numElementsPerBucket, and topK rep-
resenting the number of absolute top values one whished to select within
each bucket. One might notice that selecting the top k elements out of each
bucket, is not exactly identical to a selection of the top k× number o f buckets
elements out of the entire vector. This method nevertheless enables us to
speedup the top k selection significantly when working on highly paralleliz-
able GPUs, and does not hinder convergence speed for naturally sparse
gradients as we emphasize in the experiement section. Still, as a leftover
from the 1-bit SGD implementation, one has to set the number of gradient
bits other than a multiple of 32, in order to enable TopK SGD, even though
this value does not have any effect on the algorithm.

4.3.2 Memory Allocation

CNTK enables gradient computation to be performed on GPUs. Running
backpropagation for determining the gradients on neural networks, the ten-
sors containing the models at every layer have to be stored in device memory.
Internode gradient aggregation using MPI on the other hand needs to access
the gradient of the models through host memory. As we perform the top k
values selection on top of the calculated gradient tensors directly on GPUs,
we do not need to copy the initial gradient values back to host memory,
but rather can allocate a stream for each layer containing the sparse values.
Those streams have to be allocated temporarily on the device and on the
host.

4https://gitlab.com/demjangrubic/CNTK/tree/ApproxTopK
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4.3.3 Approximate TopK Selection

Even though we consider tensors as gradients for every layer, we will refer
to the gradient as a vector in the following section. Those tensors are simply
reshaped into a column vector before performing the top k selection and
internode aggregation. The selection of the top k elements per bucket is
executed using GPUs based on the gradient values store in device memory.
GPUs are highly efficient when working with a fixed previously known
amount of data and having little communication between threads. We want
to select the biggest absolute k values in every bucket as fast as possible.
This problem requires comparison of data shared between threads, which
can become inefficient.

We came up in section 2.4 with an approximate variant of the algorithm
called Approximate TopK SGD. This method determines for every value in
a vector, based on some probabilities with the L1 and L∞ norm of the vector,
whether the value should be taken into account for aggregation or has to be
added to the residual. In every bucket, we therefore need to efficiently calcu-
late both norms. We assign to every bucket of the vector a distinct block in
the computation grid. It is known that when working with a high number
of values, it might not be the most efficient way to assign a distinct thread
to every item in the bucket. Rather, one might consider assigning multi-
ple items in every bucket to a thread and therefore reduce the number of
threads every block gets assigned when calling the CUDA kernel. We tested
empirically, when working with bucket sizes of 512, the most efficient code
allocates 128 threads per block, and therefore every thread is responsible
for 4 items in the vector. For calculating both needed norms we make use
of the GPU collective operation Reduce. Such collectives are efficiently im-
plemented in the CUB library provided by NVIDIA5. Based on the reduced
norms and value at each position, every thread can determine whether this
value should be taken into account or not. If not, the value can simply be
copied into the residual vector in order to ensure convergence. If the value
has to be taken, the thread has to save the value and its index into the tem-
porarily allocated stream. For the exact position, each thread has to know
how many values are taken by threads with smaller ids though. Luckily,
this can again be calculated efficiently using a prefix sum collective func-
tion implemented in CUB. Based on this summed up index per taken value,
every thread can directly write the index-value pair at the corresponding
position in the stream. As we are selecting k values in expectation, we fill up
the sparse vector stream with 0 values or truncate to the first k index-value
pairs in order to have a fix amount of data for simplicity. This enables every
block to know where exactly its k values have to be stored within the entire
sparse vector stream allocated for the full gradient vector.

5https://nvlabs.github.io/cub/
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Chapter 5

Experiments

We validate our algorithms empirically in three different ways:

• We generate synthetic data, with changing dimension N, density d
and number of working nodes P. Based on the defined density, k
indices out of N are selected uniformly at random, j ∼ U (1, N), at
each node. For every selected index, a random value is chosen. On
top of those sparse values per nodes, we run our sparse AllReduce
algorithms in order to validate both, the correctness and the derived
analytical bounds

• We train linear classifiers (Logistic Regression, SVM) on large sized
classification datasets using SGD, exploiting natural sparsity by mak-
ing use of sparse AllReduce on top of the non-zero entries for every
model update

• We train deep neural networks by both forcing and exploiting sparsity
of gradient updates using TopK SGD.

5.1 Experimental Setup

We conduct all our tests on a CX50 supercomputer CSCS Piz Daint1. Each
compute node has 12 cores HT-enabled Intel Xeon E5-2690 v3 with 4GB
RAM and a NVIDIA Tesla P100 16GB GPU unit, with the latests only used
in tests involving CNTK. The internode connection on this supercomputer
uses Aries routing and communication ASICs, on a Dragonfly network topol-
ogy. In all our experiments, we define the MPI AllReduce implementation
on the fully dense vectors to be our baseline. As a MPI implementation we
make use of the installed library Cray-MPICH, a specially for this system
optimized derivative of MPICH, for fair comparison. The supercomputer

1http://www.cscs.ch/computers/piz_daint
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we run all our experiments on is known to have high bandwidth and small
latency values. Therefore, we run some tests on an additional infiniband
cluster called Greina at CSCS. Greina is a heterogeneous hardware cluster
simulating a research or development environment. It has a much higher
value in terms of latency and a lower bandwidth parameter compared to
Piz Daint. When not stated otherwise, graphs resulting from experiments
in the next section where executed on Piz Daint. We do not give, or use ex-
act values for the parameters in the communication model for two reasons.
The proposed α− β model is known to oversimplify the entire architecture.
Additionally, determining exact parameters on a running system is another,
self-contained complex topic, we do not investigate within this work. Never-
theless, the analytical model gives us insights on when to use which variant
of the algorithms.

5.2 Synthetic Data - Micro Benchmarks

We first focus on generating synthetic data and conducting micro bench-
marks. We make use of this to debug and tune the variants of our algo-
rithms. Furthermore, we want to empirically determine switching points
between all the algorithms and verify the relative ordering of the derived
analytical running times. Bear in mind, that the model is oversimplified
and we deal with unknown values not only for the parameters, but also for
the exact input at each node. We need to generate the data synthetically
following some distribution. One could simulate both extreme cases where
K = k and K = k × P. This would not give huge insights though, as we
know the algorithms which solve those problems efficiently, and are already
implemented in MPI libraries. We derive expected runtimes for a uniform
distribution of the data and thus stick with this for our experiments. This
is also a reasonable choice when having little, or no knowledge about the
true distribution of indices in real world examples. Notice that the choice of
parameters to generate the data, are within reasonable ranges seen in real
world datasets. Most of the graphs are given in a log-log scale for readability
reasons. As the resulting execution times are not deterministic, we always
conduct five experiments with newly generated data, while running each
one for ten times. Based on those 50 resulting runtime values, we state the
25 and 75 percentage quantiles in order to get an idea on the variance of the
results.

5.2.1 SSAR Rec Dbl vs. SSAR Split AlGa

As mentioned previously, we want to verify the relative ordering of the al-
gorithms. First, we start by investigating the Static Sparse AllReduce al-
gorithms. Based on the derived runtimes in terms of latency and band-
width (see Table 3.1), we see two scenarios where the recursive doubling
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(a) N = 1048576 / P = 128 (b) N = 4194304 / k = 1024

Figure 5.1: SSAR Rec Dbl compared to SSAR Split AlGa

algorithms SSAR Rec Dbl should be faster than SSAR Split AlGa . On the
one hand, if the amount of data contributed overall is small, latency should
dominate. To achieve this, not only k, but also the density has to be low
(so high dimension N), especially at a high number of nodes, in order to be
significantly faster than MPI AllReduce. This expected behavior is visible in
Figure 5.4. For a small number of non-zero values, the latency clearly domi-
nates and therefore SSAR Rec Dbl is favorable over SSAR Split AlGa . This
impact is less relevant at a higher number of nodes though, as the overall
size increases rapidly and we move towards a bandwidth dominated region.
Figure 5.1 confirms this claim by showing that the choice between those two
algorithms not only depends on the input sizes at each node, but also on
the number of nodes itself. Those two graphs correlate with the trend for
expected resulting size, formulated for uniform distribution in section 3.2.

On the other hand, if the density is such that at a high number of nodes,
the size of the final result reaches the upper bound, we expect to see similar
runtimes for both algorithms, if the latency is dominated by the bandwidth.
This is visible in Figure 5.4, where at a high number of non-zero indices,
the two lines approach each other again, after having been drawn apart. In
all the other cases, SSAR Split AlGa should dominate over SSAR Rec Dbl .
Figure 5.1 underlines this assumption. When looking at various graphs, one
thing to notice for both algorithms is the fact, that the runtime sometimes
remains constant, even the overall amount of data increases, see for instance
Figure 5.4a or 5.2a. This behavior is explainable by the automatic switch
from a sparse to a dense representation described in the implementation
chapter.

5.2.2 Static vs. Dynamic

We now turn our attention to the previously mentioned threshold δ. Even
at a low density, having a big number of nodes can result in an overall
reduced vector, for which there is no speedup of storing it in a sparse format
compared to a dense representation. Notice that this is both dependent on
the initial density at each nodes as well as the number of nodes. Figure 5.2
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(a) N = 4194304 / P = 128 (b) N = 4194304 / k = 32768

Figure 5.2: SSAR compared to DSAR

(a) N = 4194304 / k = 65536 (b) N = 16777216 / P = 128

Figure 5.3: Early switching DSAR with groups of size 8

indicates the existence of such a threshold δ. The impact of the number of
nodes P and the initial density is visible in those graphs.

DSAR Split AG makes use on the MPI specific AllGather implementation
for the second part of the algorithm. As mentioned in the previous chapter,
most implementations rely on a ring algorithm for large message sizes. Hav-
ing a high number of nodes though, the additional latency is not negligible
anymore. This observation justifies the significant increase in running time
for DSAR Split AG in Figures 5.2b and 5.3a.

5.2.3 Early Switching DSAR

We test our idea of early switching DSAR for a high number of nodes and
high fraction of input densities. We always build groups of 8 nodes, which
create dense vectors representing parts of the entire space. The ReduceScat-
ter step is then performed on those subsets of all the nodes in parallel, before
running a dense AllGather on all the nodes for interchanging the partial re-
sults. Purely empirically, we see the benefit of such a method in Figure 5.3
at high input densities or a huge number of nodes.
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(a) N = 4194304 / P = 32 (b) N = 4194304 / P = 128

Figure 5.4: All sparse AllReduce algorithms

(a) Piz Daint (b) Greina

Figure 5.5: System comparison: N = 16777216 / P = 8

5.2.4 All Algorithms

The theoretical analysis suggests that there are system dependent threshold
values, at which one should switch between the variants of the algorithms.
This claim is justified empirically in Figure 5.4. The number of parameters
given by the problem, its inputs and the system specific parameters hinders
us to give constant threshold value. Parametrized closed-form thresholds
are imaginable, but are omitted here due to their resulting complexity.

To show the impact of the system on the choice of the algorithm, we run an
identical test on both Piz Daint and Greina in Figure 5.5.

Ideally, carefully implemented algorithms automatically switching to dense
representations should never result in bigger running times than a dense
AllReduce on the entire dimension N. All the graphs underline this claim
up to small deviations and enables the use of any of the algorithms for real
world examples. Higher runtimes, visible for instance in Figure 5.3b, are
assumed to come from the definition of switching point between sparse and
dense representations in the code. As pointed out in the implementation
chapter, the choice of this threshold should not only rely on the amount
of data, as currently done in the code, but rather should take into account
the overhead introduced by the sparse summation compared to its dense
counterpart.
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(a) Piz Daint: N = 4194304 (b) Piz Daint: N = 16777216

(c) Greina: N = 4194304 (d) Greina: N = 16777216

Figure 5.6: Sparse Summation comparison

5.2.5 Sparse Summation

For implementing efficient sparse summation, we compare the resulting op-
eration times with a natural dense vector addition. We run the overlapping
version of sparse vector summations for synthetically generated sparse vec-
tors with an alternative number of non-zero indices (uniformly distributed)
and an input dimension N. Those results are compared to the dense summa-
tion with enabled SIMD optimization and a for the compiler easily optimiz-
able single for-loop. We run the experiments for multiple input dimensions
on one node of each system Piz Daint and Greina. From the results in Fig-
ure 5.6 we see that at a sparse vector having 6.25% density, the overhead of
summing up such sparse vectors makes the operation as expensive as sum-
ming up the vectors in a dense representation. Based on those empirical
values, one can try to tune the threshold for automatically switch to a dense
representation in order to balance the impact of both, this operation and the
overall amount of data added by switching to a dense representation.

5.2.6 Lower Bounds

We give lower bounds for MPI AllReduce calls with an increasing number
of items. Every item needs 4 bytes of representation. Based on the amount
of bytes needed and the duration it takes, one can derive the throughput,
the AllReduce operation achieves on both machines Piz Daint and Greina.
Figure 5.7 shows the lower bound one can achieve on such systems having
those numbers of sparse input values and fully overlapping indices. Addi-
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(a) Piz Daint: AllReduce time (b) Piz Daint: AllReduce throughput

(c) Greina: AllReduce time (d) Greina: AllReduce throughput

Figure 5.7: Sparse Summation comparison

tionally, one sees the throughput each system achieves for various numbers
of nodes. Notice that the throughput saturates once we find ourselves in a
bandwidth dominated region.

5.3 Training of Linear Classifiers

We run our sparse AllReduce algorithms for training linear classifiers us-
ing MPI-SGD, setting the batch size to 1000 × P. As convergence is not
affected by omitting zero valued elements, we do not focus on tuning the
other hyperparameters such as learning rate or momentum. We exploit nat-
ural sparsity in the model updates exchanged between nodes in order to
achieve a speedup of factors up to 3.5x on 32 and 128 nodes compared to
dense AllReduce on the supercomputer Piz Daint. On the infiniband cluster
Greina, we get a speedup of factor 20x on 8 nodes.

5.3.1 Datasets

We run all our tests on two large scale binary classification datasets, given
in Table 5.1.

5.3.2 Logistic Regression

Figure 5.8 and 5.9 give results for training a logistic regression model on
both datasets executed on Piz Daint. The relative difference between 32
and 128 nodes for the URL dataset is as expected, based on the synthetic
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Name Classes Number of samples Dimension

URL [31] 2 2 396 130 3 231 961
Webspam2 2 350 000 16 609 143

Table 5.1: Datasets for training Linear Classifiers

(a) Piz Daint: P = 32 (b) Piz Daint: P = 128

Figure 5.8: Average logistic regression epoch time for the dataset ‘URL’

(a) Piz Daint: P = 32 (b) Piz Daint: P = 128

Figure 5.9: Average logistic regression epoch time for the dataset ‘Webspam’

experiments. For Webspam, the number of nodes does not affect the relative
difference much. The reason for this is treated in section 5.3.4.

Figure 5.10 illustrates the impact of the underlying network architecture. For
the same problem and number of nodes, we achieve a speedup of factor 2x
on Piz Daint, whereas the speedup on the infiniband cluster Greina reaches
nearly 20x. Similar to the findings based on the synthetic micro benchmarks,
the choice of the best algorithm in terms of speed can vary on different
hardware architectures.

5.3.3 SVM

We conduct the same experiments for training support vector machines. The
only difference to logistic regression lies in the gradient computation, which
does not affect the communication time. Figure 5.11 supports this claim, as
we get similar results in Figure 5.9a and 5.8a.

2https://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
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(a) Piz Daint: URL (b) Piz Daint: Webspam

(c) Greina: URL (d) Greina: Webspam

Figure 5.10: Average logistic regression epoch time compared on 8 nodes
between Piz Daint and Greina

(a) Piz Daint: P = 32 / URL (b) Piz Daint: P = 32 / Webspam

Figure 5.11: Average SVM epoch time for the dataset ‘Webspam’

5.3.4 Sparsity Analysis

Figures 5.8 and 5.9 suggest that there is a difference in the distribution of the
non-zero indices between the two datasets when running logistic regression.
We perform an empirical analysis by plotting the number of occurrences in
a single epoch (run over the entire dataset) of each index. From Figure 5.12,
one can deduct that the indices affected at every iteration in the webspam
dataset are not well distributed over the entire space. Therefore, the result-
ing size stops growing after having a certain number of participating nodes.
This explains the missing difference between the runtime ratios in the above
graphs.
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(a) Dataset: URL (b) Dataset: Webspam

Figure 5.12: Sparsity analysis of non-zero indices contributed by each itera-
tion

5.4 Training of Deep Neural Networks

We train various deep neural networks using CNTK and the described varia-
tion of approximate TopK SGD in section 2.4. [NUM] in the labels Top[NUM]
represents the expected number of elements selected within each bucket of
512 elements. Theoretically, this implies k being equal to [NUM] ∗ N

512 . This
algorithm makes use of naturally sparse model updates if present, or forces
them to be at a desired density level. We run the experiments relying on
the non-blocking version of SSAR Rec Dbl on all the layers with dimension
N ≥ 10000. All the experiments are conducted with default parameters
provided in the example scripts by CNTK. We follow a weak-scaling strat-
egy when increasing the number of nodes. That is, we choose B to be the
maximal number of samples a GPU can store in memory, and thus have a
mini-batch size of P× B. For the convergence tests, we illustrate the evolu-
tion of the training error per epoch or time, as well as the top-1 accuracy
on the test samples, if available. In this second graph, one would remark
overfitting on the model parameters, if this happens to occur. We run all the
experiments on the CSCS supercomputer Piz Daint. As long runs are not
only time consuming, but also costly on this cluster, we run full convergence
tests only on small datasets.

5.4.1 Datasets

We run all our tests for training deep neural networks using the datasets
given in Table 5.2. The top three entries are used for image classification,
whereas the last one contains natural language understanding (NLU) con-
tent. The number of samples for the ATIS corpus is given in sentences (s)
and words (w).
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Name Classes Number of samples Dimension

ImageNet 2012 [39] 1000 1,2 million 256x256x3
MNIST [28] 10 60 000 28x28
CIFAR-10 [27] 10 60 000 32x32x3

ATIS [22] 128 4 978 s / 56 590 w -

Table 5.2: Datasets for training deep neural networks

5.4.2 Image Classification

Convergence of TopK SGD

We start by showing that a TopK algorithm, compared to a classical SGD,
can lead to a lower convergence rate. For this, we train the ResNet110 neural
network [21] using the CIFAR-10 dataset. The graphs in Figure 5.13 point
out two observations:

1. The convergence of SGD running on 32 nodes is slower than on 8
nodes

2. Selecting Top32 (32 elements per bucket of size 512) results in lower
convergence rate on 32 nodes, but not on 8 nodes.

(1) comes from the fact, that we do not tune any learning rate, even though
we have bigger mini batch sizes due to weak scaling. (2) underlies the
claim in section 2.4, stating that the convergence speed might be affected
when postponing the contribution of smaller values and not having natu-
rally sparse model updates. Nevertheless, this seems to happen above a
certain number of nodes only. We can think of two possible explanations for
this:

1. The variance of each stochastic gradient at a higher number of nodes
is lower due to weak scaling, which can significantly affect the conver-
gence properties of TopK SGD

2. The truncation function on top of the gradients is non-linear.

For the second point we realize that taking the biggest k absolute values
before and after summing up the partial model updates on every node is
not necessarily identical. This fact could become more significant if the
model update is distributed over a larger number of nodes.

Based on those results, we want to determine empirically how small k can be,
in order to still ensure convergence on a small number of nodes. Apparently,
selecting the top 2 out of 512 items per gradient at every layer, is sufficient
for this network and dataset to ensure convergence rate. This is visible in
Figure 5.14.
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(a) Evolution of the training error (b) Evolution of the top-1 test accu-
racy

Figure 5.13: Convergence of ResNet110 with CIFAR-10: Comparision be-
tween classical SGD and TopK on 4, 8 and 32 nodes

(a) Evolution of the training error (b) Evolution of the top-1 test accu-
racy

Figure 5.14: Convergence of ResNet110 with CIFAR-10 using 8 nodes

Speedup

The above tests are based on a ResNet architecture, which consists of many
small dimensioned layers. It is therefore not well suited for reducing the
runtime by enforcing sparsity. The Top02 run for instance, was executed in
32 minutes and 20 seconds, whereas the classical SGD pass took 34 minutes
and 20 seconds. This represents only a speedup of a factor 1.06x.

What could we theoretically achieve on a bigger dataset and possibly bet-
ter suited large scale network? For answering this question, we run 200
iterations of training VGG19 [41] on the large dataset ImageNet. The com-
putation and communication costs are roughly equal for this setting. This
implies that we can at most achieve a speedup of a factor 2x by lowering
the amount of data communicated. We notice in Figure 5.15 a significant
speedup of factor 1.5x arising from lowering the communication time as ex-
pected. Due to cost and time constraints on the cluster, a full convergence
test with this setting has not been performed during this work.

Similar to both references suggesting the TopK algorithm [1, 14], we run
an image classification task using the dataset MNIST on a fully connected
neural network. We design the network to consist of two hidden fully con-
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Figure 5.15: Speedup training ImageNet on VGG19. The top part represents
the computation time, whilst the lower part indicates the communication
time

(a) Evolution of the training error per
epoch

(b) Evolution of the top-1 test accu-
racy per epoch

(c) Evolution of the training error per
time

(d) Evolution of the top-1 test accu-
racy per time

Figure 5.16: Results of Fully Connected Neural Network with MNIST on 8
nodes

nected layers of dimension 4096. Figure 5.16 indicates the time needed and
its accuracy reached. We achieve a speedup of 4.6x without loss of test or
training accuracy.
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(a) Evolution of the training error per
epoch

(b) Evolution of the training error per
time

Figure 5.17: Results of LSTM with ATIS on 8 nodes

5.4.3 Natural Language Understanding

As a last empirical verification for the communication cost reducing algo-
rithmic idea, we conduct a single experiment on a natural language under-
standing problem. We run a small dataset test on the ATIS corpus using an
encoder-decoder network consisting of two LSTM cells each. Due to miss-
ing large scale datasets, we are only able to run this experiment on 8 nodes.
We show a speedup of 2.5x in Figure 5.17. It remains to test whether the
same loss of accuracy at a high number of nodes is visible for those types of
problems. If not, for instance if the model updates are naturally sparse, this
network architecture, in combination with this type of problem, is ideally
suited for applying TopK SGD with sparse AllReduce and hence reducing
the communication time needed at a high number of nodes.
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Chapter 6

Discussion

In this work, we give a formal definition, design efficient algorithms for the
sparse AllReduce problem and show that it can be regarded as a general-
ization of the AllReduce and AllGather collective operations simultaneously.
Especially under a uniform distribution assumption, the intermediate and
resulting reduced vector sizes are not only dependent on the input at each
node, but also rely on the number of involved processes. This fact makes it
infeasible to achieve high speedup in terms of reduced communication cost,
when dealing with moderate sparsity and a large number of nodes. Nonethe-
less, large scaled machine learning models with natural sparsity can bene-
fit of a sparse AllReduce to reduce communication costs significantly on
slow network architectures. Enforcing sparsity on machine learning prob-
lems, by applying a TopK algorithm, only seems to maintain convergence
speed at a low number of nodes and small mini-batch sizes. For 8 nodes,
we can achieve a speedup up to a factor of 4x combining all the methods
proposed in this thesis. The results suggest that the sparse AllReduce is per-
fectly suited for training very large models on a reasonably small number
of nodes. On the downside, the method lacks of performance increase at a
higher number of workers due to both, the nature of the problem, and the
loss in convergence when forcing the updates to be sparse.

Some potential topics to further investigate include the analysis of other
data distributions and the sparsity evaluation of various deep learning prob-
lems, especially those involving text or language content. This work entirely
focuses on data-parallel SGD as a main use-case for sparse AllReduce. As
pointed out in the related work section, other non machine learning fields,
such as distributed graph algorithms, can further benefit of those sparse
structures. One might also envisage to make use of the same algorithms
for solving efficiently other optimization methods such as distributed coor-
dinate descent or model-parallel SGD.
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